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J .  Phys.: Condens. Matter 2 (1990) 1163-1177. Printed in the UK 

The role of Berry’s phase in ordering the low-energy 
states of a T X T~ Jahn-Teller system in strong coupling 

F S Ham 
Department of Physics and Sherman Fairchild Laboratory, Lehigh University, 
Bethlehem, PA 18015, USA 

Received 14 July 1989 

Abstract. The sequence of the low-energy vibronic states of a T X T~ Jahn-Teller system (an 
orbital triplet electronic state in cubic symmetry linearly coupled to T2 vibrational modes) 
corresponds in strong coupling to the number of nodes in the vibrational factor of the Born- 
Oppenheimer wavefunction of these states. Berry’s geometrical phase in the electronic state 
corresponding to the lowest adiabatic potential energy surface causes the lowest singlet state 
to have more nodes than the lowest triplet, with the result that the triplet is the vibronic 
ground state, the opposite of the sequence expected for a particle tunnelling between four 
equivalent wells. Reduction factors reflecting Berry’s phase are evaluated for this triplet 
ground state. Their behaviour in departing from their limiting values in the strong-coupling 
limit is shown to be different from that predicted by a widely used asymptotic approximation 
based on the crude adiabatic approximation. 

1. Introduction 

Systems exhibiting a Jahn-Teller (JT) effect (Sturge 1967, Englman 1972, Bersuker 
1984) provide examples of Berry’s geometrical phase (Berry 1984, Delacretaz eta1 1986, 
Ham 1987, Zwanziger and Grant 1987, Chancey and O’Brien 1988, O’Brien 1989) and 
offer opportunities for its experimental confirmation. In the JT case of an orbital doublet 
(E x E problem), Berry’s phase takes the form of a sign change in the real electronic 
wavefunction that diagonalises the linear JT coupling, when the vibrational coordinates 
are rotated by 27d (Longuet-Higgins et a1 1958, O’Brien 1964). When the adiabatic or 
Born-Oppenheimer approximation is accurate, for strong coupling, this sign change has 
been proven (Ham 1987) to be directly related to the order of the lowest vibronic levels, 
requiring that the ground state be a doublet (E) with the tunnelling singlet (A) higher 
in energy. This order is the reverse of that expected for a simple tunnelling system, for 
which the singlet is the ground state. The purpose of the present paper is to describe a 
similar situation that occurs for the more complicated JT problem of an orbital triplet 
electronic state (T, or T,) in cubic symmetry with linear coupling to T, vibrational modes 
(T X t2 problem). 

The proof that the vibronic ground state of the E x E problem is determined by 
Berry’s phase to be an E doublet is equivalent, as shown in the appendix, to the 
requirement that the sequence of vibronic states be given by the number of nodes in the 
vibrational factor of the Born-Oppenheimer wavefunctions of these states. Postulating 
that this requirement can be generalised to the T x t2 case, we show that Berry’s phase 
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once again changes the order of the lowest states from that expected for simple tunnelling 
between four equivalent wells. The ground state this time is a triplet (TI or T2  depending 
on the symmetry of the original electronic state) and the higher tunnelling state a singlet 
(A2 or A, respectively). This sequence agrees with the sign of the calculated tunnelling 
splitting obtained for T x t2 by Caner and Englman (1966) and others. 

As described already by O’Brien (1989), for the lowest adiabatic potential energy 
surface of the T x z2 problem Berry’s phase appears as a sign change on any closed path 
in the three-dimensional space of the vibrational coordinates ( e s ,  Q,, Q,) that loops 
once around any one of the four (Ti?) directions that point away from the potential 
minima lying along (111). To handle the resulting problem of a multiple-valued 
wavefunction on the sphere of directions in Q-space, O’Brien has introduced a double- 
valued mapping of paths from the sphere onto a cube and has used this representation 
in classifying the vibronic states. In the present work we follow an alternative procedure 
of using a two-sheeted spherical surface, linked across suitable cuts, on which the 
wavefunction remains real, single-valued and everywhere continuous except at the 
singular points. In this representation the behaviour of wavefunctions under symmetry 
transformations is easily followed and the nodal lines in the vibrational factor of the 
resulting Born-Oppenheimer wavefunctions readily identified. We use this rep- 
resentation to show how the JT reduction factors in the triplet ground state depart from 
their limiting values as a result of both wavefunction overlap between different minima 
and the dependence on Q of the adiabatic electronic wavefunction within a single 
minimum. We show that this behaviour is different from that given by an asymptotic 
approximation, based on the crude adiabatic approximation, which has been widely 
used for strong JT coupling (Bersuker 1962, Ham 1965, Judd 1974). 

2. Lowest adiabatic state 

We consider an orbital triplet electronic state with components u5, U,, ut belonging to 
the irreducible representation T2 of the cubic point group 0 (or the tetrahedral group 
Td), linearly coupled to a triply degenerate vibrational mode ( e s ,  Q,, Qf)  also belonging 
to T2 (or the equivalent problem of a T I  state coupled to a T2  mode). The vibronic 
Hamiltonian of the T X t2 JT problem is given by 

2t = Ye09 + 7eJT (2.1) 

2to = (2p)-’(Pi + P’, + P f )  + ( K / 2 ) ( Q i  + Q’, + Q f )  (2.2) 

~ J T  = V(QsTg + QVT, + QrYt )  (2.3) 

f - 1EM - Ir)(El (2.4) f - Ir)(Cl - /C)(r71 3, = -1C)(E1 - I m C l  5 - - 

with 

the Hamiltonian of an isotropic three-dimensional harmonic oscillator and 

the linear mcoupling. We use a notation (Ham 1965) in which the T2 electronic operators 
3 - _  
and the identity 9 act in the T2 basis u5, U,, ut (these functions transform as yz, zx and 
xy respectively, where x, y and z denote fourfold cubic axes. 

The adiabatic potential energy surfaces are obtained by omitting the kinetic energy 
from equation (2.2) and finding eigenvalues of the remainder of Ye in equation (2.1) as 
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functions of Qs, Q, and Qs. As shown by Van Vleck (1939) and Opik and Pryce (1957), 
the lowest surface has four minima with a common energy 

- E j T  = -2V2/3K (2.5) 
at 

corresponding to the electronic state 

u j  = (1/V3)(mlUg + m2u,, + m3uc)  (2.7) 
where, for j =  a ,  b ,  c, d ,  (ml,  m2,m3) is the set ( + l ,  + l ,  +1), (+l, -1, - l ) ,  
(- 1, + 1, - 1) and (- 1, - 1, + 1) respectively. All along the lines from the origin pointing 
in the opposite directions from these minima this lowest surface is degenerate with the 
second surface. If by convention we take V > 0, these lines of degeneracy point in the 
directions [ i i i ] ,  [ i l l ] ,  [ l i l ]  and [ l l i ]  in Q-space, which we denote by a ,  b ,  c and 2 
respectively. 

As described already by O’Brien (1989), the electronic wavefunction U- which 
diagonalises XjT in equation (2.3) corresponding to this lowest adiabatic surface, if 
chosen real and continuous, must change sign on any closed path which loops once 
around any one of these four lines of degeneracy. Introducing spherical coordinates in 
Q-space, O’Brien has shown that it suffices to consider only the projection of any path 
on a sphere centred at the origin, and she has worked out the sign change explicitly for 
paths formed from great-circle arcs lying in the planes Qq= 0, Q,, = 0 and Qs = 0. In 
the present work we wish to follow this continuous adiabatic eigenstate u-(S2) on paths 
connecting the directions a ,  b,  c and d through the minima, and it proves equally simple 
to solve explicitly along arcs of great circles lying in (110) planes. We denote the 
projection of a point ( e s ,  Q,, Qs) on the sphere by S2. 

Starting by setting u- (Q)  identical to U, when S2 lies in the [ l l l ]  direction, in accord 
with equation (2.7), 

- - -  

u-(a) = U, = (1/v3)(uE + U,, + u t )  

we note that in the (TOl) plane, which contains both a and c, both (ut + uc)/V2 and U,, 

are invariant under the interchange E * c,  which together with Qs * Qs leaves XjT 
invariant, whereas (U: - ut)/V2 changes sign. In the (701) plane the eigenstate that 
evolves continuously from equation (2.8) can therefore be written as the linear com- 
bination 

U -  (Q)  = cos @(U: + us)/V2 + sin au,,. (2 9) 

(2.10) 
For this to be an eigenstate of XJT we must have a given by 

where 8 is the angle in the (701) plane relative to [OlO], taken positive toward [ l l l ] (a )  
and negative toward [ i l i ] (c) .  Accordingly, continuing u-(S2) along the shorter great- 
circle arc from [ l l l ]  past [OlO]  to [ i l i ] ,  we find cos a = (2/3)’12, sin a = -1/V3 at c ,  so 
that 

tan 2 a  = 2 tan 8 

~ ( c )  = ( l /v3) (us  - U, + U[) (2.11) 

U - ( C )  = -U, (2.12) 
or 

in terms of the states defined by equation (2.7). 
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Q” 

O5 
Figure 1 .  Erojected sphere showing cuts between 
the [ i l l ]  ( b )  and [ 1711 (4 directions (full line) and 
between [m] (a) and [ l l i ]  (2) (broken line), 
across which the two sheets of the double-sheeted 
surface on which u _ ( Q )  varies continuously are 
joined. 

We proceed in a similar fashion to continue u - ( Q )  from c in the (011) plane past 

(2.13) 

By contrast, if we had continued L ( Q )  directly from a to d via the shorter great-circle 
arc in the (li0) plane we would have obtained the opposite sign for ~ ( d )  from that given 
by equation (2.13). This double-valuedness in u - ( Q )  is of course the consequence of 
the sign change shown by O’Brien on a closed path looping once about one of the 
directions U ,  b ,  c or a, since our path from a to c to d and back to a encircles E. 

We can avoid double-valuedness _ _ _  in u - ( Q )  by specifying that L ( Q )  shall be con- 
tinuous everywhere except at a ,  b ,  c and 2 on a double-sheeted spherical surface, the 
two sheets of which are joined across cuts introduced between [i11](6) and [l i l](T) 
along --- the - shorter great-circle arc in the (110) plane passing over [OOl] ,  and between 
[11 l](a) and [lli](z) over the similar arc in the (li0) plane passing over [OOi]  (figure 
1). We denote the directions to the minima lying on the first sheet by a, b ,  c and d ,  and 
the corresponding directions on the second sheet by a* ,  b*,  c* and d* .  Thus starting 
from an unasteriksed direction like U ,  we can reach any other unasterisked point by a 
path that avoids the cuts, while to reach any of the asterisked directions we can use a 
path that crosses one of the cuts once (or more generally makes an odd number of such 
crossings). With this convention we may easily establish the following values for the 
continuously varying real function u - ( Q )  that starts from equation (2.8), in terms of the 
states U, for the individual minima as defined with the convention ( 2 . 7 ) :  

[ioo] to [ i i i](d),  to find 

~ ( d )  = ud = ( l , d3 ) ( -uE  - U~ + U<). 

- - -  

u - ( a )  = U, u,(a*) = -U, 

(2.14) 

u- (d )  = U d  u - ( d * )  = - U d .  

u - ( Q )  is single-valued on this two-sheeted surface and satisfies the general condition 

L(Q)  = - u - ( Q * )  (2.15) 

at corresponding points. Explicit expressions for U - ( Q  ) compatible with equation (2.14) 
may be obtained at intermediate points in (110) planes using the procedure described 
above for the (701) plane, and at points in (100) planes from the work of O’Brien. For 
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other directions u-(S2) may be obtained by solution of the general cubic secular equation 
of the adiabatic problem (Bates 1978), but as such solutions are complicated we will not 
use them in what follows. 

O’Brien has shown how u - ( Q )  can be made single-valued on a simple sphere by 
introducing a phase factor that makes u - ( Q )  complex. Such a modification is necessary 
in the usual evaluation of Berry’s phase, which is defined (Berry 1984) by the path 
integral around a closed loop of the vector potential associated with this phase factor. 
In the present case Berry’s phase is kn on any path looping once around any one of the 
directions a ,  6, cor  2 and corresponds to the sign change on this path in the real function 
u_(G?). For the purposes of this paper, we will continue to use this real function on the 
two-sheeted spherical surface introduced above. 

_ _ _  

3. Adiabatic approximation for low-energy vibronic states 

An eigenstate y of the full vibronic Hamiltonian (2. l), including the kinetic energy, may 
be approximated as a simple Born-Oppenheimer product (adiabatic approximation: 
Longuet-Higgins (1961)) involving the orientation-dependent electronic state .-(e) 
from the lowest adiabatic surface, with S2 corresponding to the orientation of Q ,  

V(Q)  = dQ) U -  (Q> (3.1) 

if the JT coupling is sufficiently strong and if we consider only the states with energies 
near the minimum from equation (2.5). In equation (3.1) q ( Q )  is a vibrational factor 
which should satisfy a differential equation that depends on u_(S2),  as discussed by 
O’Brien (1989). But, as we have not obtained u-(S2) for general Q ,  we will confine our 
attention to states for which q ( Q )  can be approximated as a linear combination of 
functions localised at the minima which overlap only slightly with the functions at other 
minima. We will consider the form of these states as determined by their symmetry 
classification under the cubic point group. 

Since L ( Q )  is defined on a double-sheeted spherical surface, the same must be true 
of q ( Q )  = q ( R ,  a ) ,  where we let R denote (Qi  + Q’, + et)’’*. However, the full 
vibronic function y ( Q )  must have the same value at corresponding points S2 and S2* of 
both sheets (since q(Q) can be expanded as a linear combination of products of the 
electronic states U { ,  U,,, ut with three-dimensional harmonic oscillator eigenfunctions of 
X o  from equation (2.2), which are single-valued on the sphere). Therefore q ( R ,  5 2 )  
must satisfy the same condition (2.15) as u-(S2): 

q ( R ,  Q)  = - d R ,  Q*). ( 3 4  

We consider the four functions 

V u  = [xa(Q> - 
V b  = [ X b  (e) - X b *  (Q>lu- (n 
where x,(Q) and x,*(Q) are equivalent functions of Q ,  each centred at the minimum 
indicated by the subscript, on the two-sheeted surface. Thus xu(Q) has amplitude only 
in the vicinity of the minimum in the direction a and xa.(Q) only near that in direction 
U * .  We will take x,(Q) and x,.(Q) to be real and individually normalised in Q-space, and 

<Q>Iu - (Q 1 V c  = [xc(Q> - xC* (Qllu-  (Q)  

V d  = [ X d ( Q >  - xd*(Q) lu- (Q)  
(3.3) 
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we consider each in a first approximation to be positive, isotropic and gaussian in its 
distribution about its centre. The combination 

( Q )  = X, ( Q )  - XI*  ( Q )  (3.4) 
then satisfies equation (3.2). The qI in equation (3.3) accordingly have identical values 
at S2 and Q*,  so that they are single-valued on a simple sphere despite the fact that each 
of their factors vi@) and u-(S2) requires the two-sheeted surface for its domain of 
definition. 

The transformation of the four functions (3.3) under symmetry operations? is now 
straightforward, but the results are not obvious because of the sign changes encoded in 
the function u - ( Q ) .  For example, under a threefold rotation about the [ill] axis, we 
make the substitutions x + y +  z + x ,  Q5+ Q ,  + Q t  + Q E ,  u5-+ U , ,  + u t+  u5  in 
both x,(Q) and u-(S2) in equation (3.3) to find 

V o  -+ Va q b  + q c  q c  + - q d  q d -  - q b  (3.5) 

while the twofold rotation corresponding to the substitutions x + y + x, z + -2, 
Q 5 -  -Qv, Q,,+ -QE,  et+ Q c ,  ut+ -U,, U,,+ - M E ,  ut-+ qyields  

q a  + q d  q b  ---$ q b  v c +  v c  q d  + q a .  (3.6) 
From the character table of the cubic group it is easily shown in this way that the four 
functions (3.3) span the irreducible representations A I  and T2, yielding a triplet and a 
totally symmetric singlet. (For the TI X T~ JT problem we find instead that the qL span 
A2 + TI,  the difference arising because in this case we have U ,  + uy + U,, U, + - u, for 
C;  about [ i io ]  and consequently q b  + -yb ,  q C  + -qc in equation (3.6) because of 
the sign change in u-(b) ,  u-(b*) ,  u-(c) and u - ( c * )  that occurs under this transformation.) 
We note that it is the full vibronic functions (3.3) that constitute the basis of rep- 
resentations of the symmetry group of the JT centre, not the vibrational functions 
q@) by themselves. Since u-(S2) is not an invariant of the group, this distinction 
is essential in correctly identifying linear combinations of these functions by their 
transformation properties. 

The singlet function thus obtained as a combination of the functions (3.3) is 

q A 1  = N A ( q a  - q b  - q c  + q d )  (3.7) 
where N A  is a normalisation factor to be obtained below$. The triplet components are 
similarly found to be 

(For TI x z2 the linear combinations (3.7) and (3.8) give the states transforming as A*, 

t Note that the operations of the cubic group 0 in the coordinate space ( x ,  y,  z) of the original JT problem 
become those of the tetrahedral group Td in the mode space ( e i ,  Q,,, Qc) .  For example, a JC rotation about 
the [ l i O ]  axis in coordinate space becomes a reflection in the (110) plane in Q-space, and a fourfold rotation 
C4 becomes an improper rotation S4 for Q. 
$ The disposition of minus signs in equations (3.7) and (3.8) depends on the particular choice made in $ 2  for 
the cuts across which the two sheets of the double-sheeted surface are joined. This choice also determines the 
relative signs that appear in equation (2.14). 
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T1,, Tly, TI, respectively when the substitutions u t +  U*, uV+ uY and U ( +  U ,  in u - ( Q )  
are made .) 

In obtaining the normalisation factors N A  and NT, we substitute from equation (3.3) 
into equations (3.7) and (3.8) and must take account of overlap among the functions 
xi@) between different sites. Assuming such overlap negligible except between nearest 
neighbours, we identify such pairs as those having the shortest separation on great-circle 
arcs on the two-sheeted surface. Some such pairs, namely a and d * ,  a* and d ,  b and c* 
and b* and c ,  lie on opposite sides of a cut and thus lie on different sheets. The nearest 
neighbours of a are b ,  c and d * ,  for example, and those of b* are U * ,  d* and c .  With the 
functions xi@) taken to be positive, the overlap between each such neighbouring pair 
is a small positive number S.  Since L ( Q )  is a normalised electronic state for any S2 and 
the xi@) are individually normalised functions of Q ,  we find 

N A  = (8 - 24S)-”* (3.9) 

NT = (8 + sS)-’/2 (3.10) 

in agreement with O’Brien (1989). 

4. Order of the low-energy states 

In the appendix it is shown that an earlier general proof (Ham 1987) of the sequence of 
the low-energy vibronic states of the E x E JT problem is equivalent to ordering these 
states according to the number of nodes in the vibrational factor q ( Q )  of the Born- 
Oppenheimer wavefunction (3.1). We postulate that this is a more general result and 
apply it to the T x z2  problem to determine the order of the A and T states obtained in 
8 3. 

Combining equations (3.3) and (3.8), we may write the vibrational factor for the T2t 
state explicitly as 

q T 2 5  = N T ( X a  - X b  -t X c  - X d  - X u *  + X b *  - X c *  -t- X d ’ ) .  (4.1) 

Since all X,S are positive, this clearly changes sign between the pairs of neighbouring sites 
(a ,  b) ,  (a * ,  b*) ,  (c,  d )  and (c*, d*) .  However, since a and d* are nearest neighbours 
rather than a and d ,  there is no sign change as we pass from one sheet to the other in 
crossing the cut to go from a to d* or from a* to d.  The nodal lines of q T 2 5  are therefore 
to be drawn on both sheets of the sphere only between the singular directions a and 6 
and between c and a. This pattern (figure 2(a))  clearly contains the least number of 
nodal lines compatible with the requirement (3.2). Similar patterns apply to qnV and 
qn5 in figures 2(b) and (c). 

For the A ,  state we obtain 

q A I  = N A ( X a  - X b  - X c  + X d  - X u *  -k X b *  -k X c *  - X d * )  ( 4 4  
and see that sign changes occur between all nearest-neighbour pairs. In this case we have 
nodal lines on both sheets from a to 6, from 2 to a, from 6 to 2 and from a to c, as well 
as along the lines of the cuts between 6 and: and between a and a where the two sheets 
are joined (figure 2 ( d ) ) .  Since this number of nodal lines for A I  is more than the minimum 
number required to satisfy equation (3.2), according to our postulate the A l  state must 
lie at a higher energy than T2. The vibronic ground state of the T2 x t 2  problem is 
therefore found to be the T, triplet (and for the T, x t2  problem a T1 triplet, with the 

- -  
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Qn 

I a1 I 

I c l  i“ 

Figure 2. Nodal lines on the projected sphere for the vibrational factor q ( Q )  in the Born- 
Oppenheimer wavefunctions for the T and A vibronic states formed as linear combinations 
of isotropic states x, (Q)  centred on the adiabatic potential energy minima: (a) T2E or TI,; (b) 
Tzq or T,,; (c) Tzr  or TI,; ( d )  A ,  or A*. Full line and curves denote arcs above the plane Q5 = 
0, broken line and curves those below this plane. 

A2 singlet higher). This is the sequence of these states obtained by Caner and Englman 
(1966), Shultz and Silbey (1976), Sakamoto (1984), Dunn (1988) and O’Brien (1989) 
from explicit calculation of the tunnelling splitting. The vibrational wavefunctions (4.1) 
and (4.2) can be shown to agree with those given by O’Brien (1989)T. 

In understanding how this sequence of the low-energy states follows from Berry’s 
phase, it is useful to contrast the wavefunctions (3 .7 )  and (3.8) with those given by 
another widely used approximation based on localised states. In this approach (Bersuker 
1962, Ham 1965, Judd 1974), which we will follow Longuet-Higgins (1961) in calling the 
crude adiabatic approximation, a vibronic state at the ith minimum is taken as the 
product of the vibrational factor xi(Q) with the fixed electronic state ui appropriate to 
that minimum, as given by equation (2.7). From the transformation behaviour of Q:, 
Q,, Q ,  and u5, U,, U, cited earlier, we find the combinations transforming as AI and T2 
are then given (Ham 1965) by 

t The identification of cpn5 and cpAl with the vibrational wavefunctions given by O’Brien (1989) is established 
ifwe identify the minimashe labels la ,  2a, 3a, 4a, lb,  26,36 and4b witha, b*,  c * ,  d,  a*, b, c andd* respectively. 
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(4.3) 

with the normalisation factors (Dum 1988) 

Whereas in equation (4.3) is obviously invariant under 0, the minus signs in VA1 in 
equation (3.7) are evidently required at those sites b and c (together with a* and d * )  at 
which u - ( Q )  is the negative of U,, ub, U ,  or u d  according to equation (2.14). Similarly, 
the sign differences in the terms of the T2 functions between equations (3.8) and (4.4) 
occur for the same sites. Clearly it is the behaviour of the sign of the continuous function 
u- (Q)  that causes these differences and thus affects the relative signs of the localised 
functions xj in the vibrational factors qAl and Gn5 in equations (4.1) and (4.2). But the 
sign behaviour of L ( Q )  from one site to another is a manifestation of Berry's phase. 
We see therefore how Berry's phase affects the nodal pattern in cpA1 and VT25 and thus 
the sequence of their energies. 

5. Reduction factors in the triplet state 

We will use the triplet wavefunctions of equation (3.8) to ascertain how overlap between 
different minima and the @dependence of u - ( Q )  affect the orbital reduction factors 
K(T,), K(T,) and K(E) in the triplet ground state. Such a reduction factor is defined as 
the ratio of the matrix element of an electronic operator of the appropriate symmetry 
T I ,  T2  or E,  taken with respect to the vibronic states qTZ5, VT2,,, qnc of equation (3.8), 
to the corresponding matrix element of the same operator taken with respect to the 
original electronic states uS,  U,, ,  U ( .  Since all of these vibronic states in the Born- 
Oppenheimer approximation have the form q j ( Q ) u - ( s l )  of equation (3.1) and involve 
thesame adiabaticelectronicstate u- (Q) ,  wemust first form thediagonalmatrixelement 
(u-(Q)lOlu-(Q)) and then average over Q with the appropriate weighting factor 

It is then immediately clear that in the Born-Oppenheimer approximation we have 
q7 <Q>Vj<Q>. 

K(T,) = 0 (5.1) 

since any diagonal matrix element of a time-odd TI operator like orbital angular momen- 
tum is zero for any real state such as u - ( Q ) .  

Since we have not worked out u - ( Q )  explicitly except in (110) and (100) planes, we 
cannot carry out the necessary averaging for E andT20perators except in an approximate 
way. For the contribution of overlap between xi and xj at nearest-neighbour sites we 
therefore evaluate (u-lolu-) midway between these sites and multiply by the overlap 
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factor S used in § 3. This approximation works well for the reduction factor q in the 
E X E JT problem. For an E operator such as 

% @  = 115)(51 + hIq)(ql - IC>(51 (5.2) 
the matrix element ( ~ - i % ~ l u - )  vanishes at the minima, but a non-vanishing value for 
K(E) is contributed by the overlap 

K(E) = 8N;S = S/(1 + S). 

K(T2) = 8N+(#q + S) = %(q + $S)/(1 + S)  

(5.3) 

(5.4) 

For T2 operators (2.4) we obtain 

where q denotes a parameter giving the effect of the variation of u - ( Q )  near each 
minimum in reducing the magnitude of (u-11T751u-), when averaged over x:, from the 
value it would have if u- (Q)  were the fixed wavefunction u-(i)  appropriate to the 
minimum 

Since X, is symmetric about (a),  we approximate the matrix element in the integrand by 
its average value over the ( i O l ) ,  ( l i0 )  and (Oli) planes that intersect at (a) ,  using the 
equivalent of equation (2.9) in each of these planes: 

( U - ( S ~ ) ) I ~ ~ ~ I ~ - ( Q ) > ~ . ( , ,  = -~(22/2sin aces a + cos2 a). 

( u - ( S 2 2 ) 1 ~ - 5 ( u - ( ~ ) ) A v ( a )  = -#(I - h p 2 )  

(5.6) 
Expanding equation (5.6) about the minimum, using equation (2. lo), one finds to second 
order 

(5.7) 
where p is the angle between S2 and the [ l l l ]  (a)  direction. 

Assuming X, approximated by 

X, = (c/x)'/~ exp(-cp2/2) (5.8) 

11 f 1 - (1/6~) .  ( 5  * 9) 

we obtain from equations (5 .5)  and (5.7) 

If c is large the overlap S decreases exponentially with c so that the asymptotic behaviour 
of K(TJ in equation (5.4) is dominated by the form of equation (5.9). K(T,) is therefore 
expected to approach its asymptotic linit 2/3 from below as localisation becomes 
stronger. 

By contrast, approximating the triplet state for strong coupling by equation (4.4), 
we obtain 

(5.10) 

(5.11) 

corresponding to the crude adiabatic approximation. We note that K(TJ is not zero in 
this approximation and thus is in conflict with the requirement of equation (5.1) imposed 
by the adiabatic (Born-Oppenheimer) approximation. This result follows because in 
using equation (4.4) we have cross terms involving different electronic factors, (u,ITlrlub) 
for example, in the overlap region of X, and X b ,  whereas the Born-Oppenheimer 

K(E) = K(Tl)  = $S/(l + 4s) 
K(T2) = #(l  + S)/(1 + 4s) 
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approximation always involves the diagonal matrix element (u-(Q)lT,,lu-(Q)), which 
vanishes. Moreover, equation (5.11) gives for K(T2) the wrong asymptotic approach to 
the limit 2/3 in predicting K(T2) always greater than this limit. This results from the 
failure of the crude adiabatic approximation to take into account the variation in u - ( Q )  
within each wellt. The approximation represented by equations (4.3) and (4.4) is 
therefore entirely inadequate in representing how the reduction factors depart from 
their limiting values in the strong-coupling regime. 

6. Discussion 

We have seen that in both the E x E and T X z2 JTproblemS the double-valued behaviour 
of the electronic wavefunction for the lowest adiabatic surface, which we identify with 
Berry’s phase, is responsible for changing the sequence of the lowest vibronic states 
from that which would be appropriate to a particle tunnelling between equivalent wells. 
For the latter case the ground state would be the symmetric (A,) combination of the 
lowest-energy state for the particle in each well, and this wavefunction is nodeless 
(Courant and Hilbert 1953). In the E x E case, by contrast, the vibronic ground state is 
an E doublet, and for T x t 2  a T2 (or T,) triplet, these being the states having the fewest 
nodes compatible with Berry’s phase as expressed for T x t2 by the requirement (3.2) 
and for E x E by equation (A4). In both cases the A, (or A2) singlet is constrained to 
have a larger number of nodes and is the first excited state. 

That the sequence of the E and A tunnelling states for the E X E case can be related 
to the number of nodes in the vibrational part of the wavefunction was first noted by 
Sturge (1967) in his review?. The general proof for E x E ,  given in the appendix, that 
states can be ordered in energy according to the number of nodes in rp(B), and that only 
an odd number of such nodes is compatible with Berry’s phase, confirms Sturge’s 
observation. The corresponding relationship for the T x t 2  case, which yields the order 
of the lowest T and A states obtained in explicit calculations of the tunnelling splitting, 
seems not to have been noted previously. For T X t2  it is presumably not possible to 
prove the analogous theorem for a general vibronic state relating relative energy to the 
number of nodal lines, since for more than one independent variable such a theorem for 
the eigenstates of a partial differential equation is not generallly possible even when 
Berry’s phase is not in consideration (Courant and Hilbert 1953). However, the ground 
state of the latter problem is always nodeless, whatever the number of independent 
variables, while all excited states must have at least one nodal surface. It is therefore 
likely that the vibrational wavefunction in the ground state of the Berry phase problem 
should always have the minimum number of nodal surfaces compatible with Berry’s 
phase and that states having a greater number of such surfaces should have a higher 
energy. We postulate this rule as a generalisation of what has been proven for E X E ,  

and as we have seen it fits very well what is known about the lowest states of T x t2. 
Whereas many examples of JT defects in crystals have been observed experimentally 

for which this sequence of the lowest vibronic states for E x E is confirmed (Ham 1987), 
there seems to be only one example of a T X z2 centre in which the order of the tunnelling 

t The importance of recognising that u - ( Q )  is not constant within each well was first pointed out by O’Brien 
(1964) in interpreting the hyperfine interaction of an E X E JT defect with neighbouring ligands. 
i M D Sturge in a private communication credits this observation to an unpublished comment by M H L 
Pryce . 
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states can be identified. This is the excited T2 state of the isolated arsenic antisite AsGa 
in GaAs, a defect which has been identified with the deep donor EL2 (Kaminska et a1 
1985). Although the A l  tunnelling level was not observed directly in the optical absorp- 
tion studies of Kaminska et al ,  the effect of this level on the stress-splitting of the zero- 
phonon line is unmistakable. The A l  level unquestionably lies above the T2 vibronic 
ground state (by -60 cm-’), the expected order if these levels of AsGa indeed originate 
in a T x z2 JT effect. 

Although all the reduction factors K(T2), K(E) and K(Tl) have the value unity when 
JT coupling is zero, we have found in 9 5 that K(T2) does not vary monotonically with 
increasing coupling but approaches its strong-coupling limit 2/3 from below, Precisely 
this behaviour of K(T2) was observed in the calculated results of Caner and Englman 
(1966) and confirmed by the more extensive numerical results of Sakamoto (1984). 
Sakamoto found this decrease to be small, however, the minimum occurring at K(T2) -- 
0.65. An explanation for this behaviour of the results of Caner and Englman was 
proposed by Ham (1972), by analogy with that of q in the E x E case, as resulting from 
the dependence of the electronic part of the Born-Oppenheimer product wavefunction 
on thevariation of Q within each well and the finite spread of the vibrational wavefunction 
xi within the well. This proposal is now confirmed by the appearance of the parameter 
11 in the expression (5.4) for K(T2). Although this expression also depends on S ,  the 
overlap between wells, in such a way as to increase with increasing S ,  the exponential 
dependence of S on the barrier height between wells (which for T x z2 is proportional 
to EJT) implies that the effect of delocalisation in diminishing K(T2) dominates asymp- 
totically the increase due to overlap between wells. 

Indeed, Leung and Kleiner (1974) have proven a general relation that must hold 
between the reduction factors of any triplet state, for any form of JT coupling (including 
quadratic and higher-order couplings but excluding coupling to other states): 

K(E) = 1 - G(K(T2) - K(T1)) - 3f(Ti) (6.1) 

wheref(T,) is a small positive parameter which is zero for both zero JT coupling and the 
strong-coupling limit. Since the Born-Oppenheimer approximation requires K(Tl) = 
0, we find then 

K(T2) = $(l - K(E)) - 2f(T1). (6.2) 

So long as we have K(E) > 0 as a result of overlap, as we find in equation (5.3), this 
relation shows that we must have K(T2) < 2/3 in the absence of non-adiabatic corrections 
that make K(T,) non-zero. The effect of delocalisation within each well in diminishing 
K(T2) therefore must always dominate the increase due to overlap between wells, just 
as in the case of q for E x E (Ham 1968). 

We should note that corrections to the adiabatic approximation in the E x E case, 
resulting from the kinetic energy’s coupling states from different adiabatic energy 
surfaces, have been shown by Williams et aZ(l969) to change the reduction factorsp and 
q by an amount of order - ( ~ w / E ~ ~ ) ~ .  Similar non-adiabatic corrections of the same 
order of magnitude to K(E), K(T2) and K(TJ presumably occur for the T x t 2  case as 
well, and it is of course these that lead K(Tl) to be non-zero. But since the overlap S 
depends exponentially on (EJT/hu) for T x t2 (O’Brien 1989), we may expect the non- 
adiabatic corrections always to dominate asymptotically those resulting from overlap 
between wells. Expressionsfor K(E) and K(T2) such as equations (5.3) and (5.4), which 
omit non-adiabatic corrections, should therefore be used with caution in fitting and 
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interpreting curves for reduction factors obtained by numerical methods which include 
such corrections. 

Analytic expressions for reduction factors in the T x t 2  case have recently been 
obtained by Bates and Dunn (1989) by a new method based on a unitary transformation 
of the JT Hamiltonian (Bates et a1 1987). In the approximation of neglecting coupling to 
states of higher energy, wavefunctions for the lowest A and T states have exactly the 
same form as in equations (4.3) and (4.4) ( D u m  1988) and yield reduction factors 
identical to equations (5.10) and (5.11). To this approximation the transformation 
method therefore represents no improvement on the crude adiabatic approximation. 
Bates and Dunn (1989) show however that it is possible to correct these ground- 
state wavefunctions by using perturbation theory to treat terms in the transformed 
Hamiltonian that couple to higher states. The resulting reduction factors have a modified 
form from that of equations (5.10) and (5.11), with K(E) and K(T,) no longer equal. 
These modified reduction factors are not directly comparable to those of the full adiabatic 
approximation given by equations (5.1), (5.3) and (5.4), however; K(T,) is now found 
to be slightly less than 2/3 in approaching this limiting value, as results in the adiabatic 
case from the Q-dependence of the electronic wavefunction within each well, but K(TJ 
remains non-zero and proportional to overlap between wells whereas it is rigorously zero 
for a Born-Oppenheimer wavefunction even if overlap is significant. The transformation 
method does provide a convenient approximate analytic interpolation of the reduction 
factors between the limits of weak and strong JT coupling. However, its failure to 
converge to the adiabatic approximation including the Berry phase, rather than to the 
crude adiabatic approximation, as the strong-coupling limit is approached, suggests a 
fundamental flaw in the transformation method in providing insight even into the 
behaviour of strongly coupled JT systems. 

Although approximate wavefunctions obtained from the crude adiabatic approxi- 
mation, such as those given by equations (4.3) and (4.4), have the correct symmetry 
properties and may be useful in estimating the tunnelling splitting (O’Brien 1989), we 
have seen that they are unreliable in describing how the reduction factors depart from 
their limiting values. Not only do they give a non-zero value for K(T,) (and similarly for 
pin E X E )  when the Born-Oppenheimer approximation requires that a reduction factor 
for a time-odd operator be zero, but they omit entirely the correction from the spread 
of the vibrational wavefunction within each well, which dominates the asymptotic 
behaviour. They also give for K(E) and K(T2) a dependence on the overlap S which is 
wrong in detail. Thus even in a situation in which it might be meaningful to omit non- 
adiabatic corrections (as in the E x E case, for which the barrier height between wells 
can be chosen independently of EJT), the crude adiabatic approximation should not be 
used in estimating departures of reduction factors from their limiting values. This seems 
to be a general conclusion applicable to all JT systems. 
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Appendix. Alternative proof of the sequence of states for the E X E JT problem 

For the E X E JT problem (O’Brien 1964) of an orbital doublet U @ ,  U ,  with strong linear 
coupling, the electronic factor in the Born-Oppenheimer approximation (3.1) is 
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u - ( e )  = uo COS(@) - U, sin(8/2) (AI) 
(coupling coefficient V ,  > 0 assumed), while the vibrational factor y l (8)  must satisfy 
the differential equation 

-a(d2yl/d02) + V(8)yl - Eyl = 0. (A2) 
Here E is the energy eigenvalue and V( e)  the effective adiabatic potential energy, which 
has 2n/3 periodicity: 

v(e + k / 3 )  = v(8). (A31 
We require that q ( 0 )  satisfy 

q(e + 2 4  = - V ( e )  

to compensate the sign change in u - ( e )  under the substitution 0-t  8 + 2n. 
(Haupt 1919, Wilson 1954). 

Solutions of equation (A2) are subject to the following theorem and its corollary 

Haupt’s theorem. Let Ao,  A,, A 2 ,  . . ., be the values of A in ascending order for which 
periodic solutions [w(x + 2x) = w(x) ]  of the equation 

(d2w/dx2) + [A + U(x) ]w  = 0 045) 
exist for U(x) real and periodic (U(. + 2n) = U(x)). Also let XI, i2, . . . , be the values 
of A in ascending order for which solutions of this equation exist that satisfy w(x + 2x) = 
- w(x). Then Ai and hi satisfy the sequence 

A0 < h, G i2 < A, G A 2  < . . . < i2n-1 G i2,, < A2,-, G AZn < .  . . . (A6) 

Corollary. The solutions of equation (A5) corresponding to i2,,- , and i2,, have (2n - 1) 
nodes in the domain 0 s x < 2n, and those corresponding to A2,, - ,and A2,, have 2n nodes. 
The sequence (A6) is therefore ordered according to the number of nodes in the 
corresponding solutions within this domain. 

Since the potential energy V ( 0 )  has 2n periodicity if it satisfies equation (A3), 
we can apply Haupt’s theorem and its corollary to equation (A2) over the domain 
0 G 8 < 2n, and we see that the only acceptable solutions q( e)  satisfying equation (A4) 
are those corresponding to ill i2, h3, i4, i5, h6, . . ., which thus have 1, 1, 3, 3, 5, 5 
nodes respectively in this domain. The solutions of the E X E JT problem in the Born- 
Oppenheimer approximation are therefore ordered in energy according to the number 
of nodes in the vibrational factor q( 0) in the domain 0 G 6 < 2x, and for strong linear 
JT coupling the only acceptable solutions are those with an odd number of nodes. To 
identify these solutions with the doublet E and singlet A, or A2 vibronic states, we first 
write q ( 8 )  in the Bloch form of band theory: 

yl,(e> = exP(ikelf(e) (A7) 
wheref(8) has 2n periodicity, and note that for V ( 0 )  taken to have 2n periodicity the 
range of the wavenumber k in the reduced zone is -i < k G +i. The condition (A4) is 
satisfied only at the zone surface k = i, at which point we might in general expect an 
energy gap corresponding to a difference between the pair of eigenvalues h2n- and h2,,. 
However, V ( 8 )  actually has 2x/3 periodicity according to equation (A3), so that the 
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reduced zone should really be taken to be -$ < k 6 +$. Since, in band theory, energy 
as a function of k is continuous within the reduced zone and has the same value at k k ,  
there can in fact be no energy gap at k = 2 4  when the reduced zone extends to k = #, 
and the eigenvalues and x, of equation (A6) must coincide, as must i, and h6, etc. 
The transformation behaviour of the corresponding solutions (Ham 1987) identifies 
these pairs as E states under the cubic group. On the other hand, k = #now corresponds 
to the edge of the actual reduced zone, at which a gap may occur, so that i3 and A 4  may 
be distinct (as may i, and x8, etc) and may be shown to correspond to states of symmetry 
A, or A2. The sequence of acceptable states of the JT problem (for the states with no 
radial vibrations excited) then follows from the sequence of xi in equation (A6): 

with the corresponding number of nodes in (0 6 6’ < 2n) given by 1 ,3 ,3 ,5 ,7 ,9 ,9 ,  . . ., 
respectively. The sequence (A8) is the same as that obtained previously (Ham (1987) 
by a slightly different method of proof that did not reveal so simply the nodal structure 
of these states. 
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